Flow Cytometric Assessment of MRD

Brent Wood MD, PhD
Department of Laboratory
Medicine
University of Washington

Identification

Abnormal population identification

Normal

 Antigens expressed in consistent and reproducible patterns with maturation

Neoplastic

- Increased or decreased normal antigens
- Asynchronous maturational expression
- Aberrant antigen expression
- Homogeneous expression

Normal B cell Maturation

Normal B cell Maturation

ALL MRD

0.1% abnormal immature B cells

Informative Immunophenotype

ALL Informative Antigens

Table 1. Useful antibody combinations for immunophenotypic MRD detection.

Antibody combinations*	Suitable cases (n) (%)	LAIP frequency in childhood ALL°
CD38/CD10/CD34/CD19	36/63 57.1%	30-50%
CD45/CD10/CD34/CD19	17/64 26.6%	
CD21/CD10/CD34/CD19	0/57 0	5-10%
CD22/CD10/CD34/CD19	0/55 0	20-30%
CD58/CD10/CD34/CD19	11/62 17.7%	40-60%
TdT/CD10/CD34/CD19	22/61 36.1%	30-50%
CD13/CD10/CD34/CD19	8/62 12.9%	10-20%
CD15/CD10/CD34/CD19	3/58 5.2%	5-10%
CD33/CD10/CD34/CD19	2/59 3.4%	5-10%
CD65/CD10/CD34/CD19	0/59 0	5-10%
CD66c/CD10/CD34/CD19	15/62 24.2%	10-20%
CD10/NG2/CD34/CD19	9/60 15.0%	3-5%
CD10/CD56/CD34/CD19	3/57 5.3%	5-10%

^{*}FITC/PE/PerCP/APC; "Refs. 2,3,5,8.

Minimal MRD Reagents

- Simple two-tube panel
 - CD10 FITC / CD20 PE / CD45 PerCP / CD19 APC
 - CD34 FITC / CD9 PE / CD45 PerCP / CD19 APC
- Abnormalities detected (N=82)
 - Tube 1 = 93% of cases
 - Tube 2 = 94% of cases
 - Tubes 1 and 2 combined = 99%

Risk Adapted Therapy - AALL03B1

6 color flow cytometric assay

	FITC	PE	PerCP- Cy5.5	PE-Cy7	APC	APC-H7
Tube A	CD20	CD10	CD38	CD19	CD58	CD45
Tube B	CD9	CD13/3 3	CD34	CD19	CD10	CD45
Tube D	Syto16		CD3	CD19	CD71	CD45

Collect 750,000 events

CD45/SS

Borowitz et al (1993) AJCP 100:534-40. Steltzer et al (1993) Ann NY Acad Sci 667:265-280

Normal Blast Maturation

Normal Granulocyte Maturation

AML Informative Antigens

Lack of expression

Total

CD15+CD13+CD33-

CD15+CD13-CD33+

19.8

0.2

0.2 0.5 0.3 0.2 0.9 1.1 0.4 4.5 1.2 10.0 0.1 0.1 36.1 0.3 5.2 1.6

Table 2
Distribution of LAIP and of LAIP classes in 1400 patients with newly diag-
nosed and untreated AML (Laboratory for Leukemia Diagnostics, Munich,
Germany)

Germany)					CD15+CD15-CD35+	,
LAIP class	LAIP	n			CD34-CD135+CD117+	17
					CD38-CD133+CD34+	10
Asynchronous	Total	652	20.6		CD4+CD13-CD14+	7
	CD11b+CD117+CD34-	156	4.9		CD9-CD34+CD33+	30
	CD11b+CD117+CD34+	92	2.9		CD9-CD34-CD33+	34
	CD11b+CD117-CD34+	36	1.1		HLA-DR+CD33-CD34+	12
	CD34+CD116+CD33+	113	3.6		HLA-DR-CD33+CD34-	143
	CD34+CD15+CD33+	193	6.1		HLA-DR-CD33+CD34+	37
	CD65+CD87+CD34+	12	0.4		MPO+LF-eCD15-	315
	CD65+CD87-CD34+	50	1.6		MPO+LF-eCD15+	4
Cross-lineage	Total	742	23.5		MPO-LF+cCD15+	3
Cross-lineage	CD34+CD13+CD19+	48	1.5	Overexpression	Total	1139
	CD34+CD2+CD33+	51	1.6	Overexpression	CD11b-CD117++CD34+	9
	CD34+CD56+CD33+	83	2.6		CD13++CD34++	163
	CD34-CD13+CD19+	21	0.7		CD15++CD13++CD33++	52
	CD34-CD2+CD33+	33	1.0		CD34++CD135+CD117++	35
	CD34-CD56+CD33+	189	6.0		CD34++CD33++	65
	CD4+CD13+CD14-	87	2.8		CD34-7.1++CD33+	53
	CD7+CD33+CD34-	75	2.4		CD36++CD235a++CD45(+)	25
	CD7+CD33+CD34+	155	4.9		CD38++CD133++CD34++	16
					CD4++CD64++CD45++	144
					CD4+CD13++CD14++	19

Average 2.3 LAIP per patient

	CD34++CD135+CD117++	35	1.1
	CD34++CD33++	65	2.1
	CD34-7.1++CD33+	53	1.7
	CD36++CD235a++CD45(+)	25	0.8
	CD38++CD133++CD34++	16	0.5
	CD4++CD64++CD45++	144	4.6
	CD4+CD13++CD14++	19	0.6
	CD61++CD14-CD45+	5	0.2
	CD65++CD87++	162	5.1
	CD90++CD117++CD34+	23	0.7
	HLA-DR++CD33++CD34++	41	1.3
	TdT(+)eCD33++eCD45++	327	10.4
Total		3158	100.0

Population Identification

- Leukemia-Associated immunophenotype (LAIP)
 - At diagnosis
 - Immunophenotypic deviation relative to normal is identified
 - Informative reagent combinations selected (reduced or custom set)
 - Gate is created for monitoring
 - Follow-up
 - Run reduced reagent combination
 - Count events in pre-defined gate
- Deviation from normal maturation
 - At diagnosis
 - Immunophenotypic deviation relative to normal counterpart is identified
 - Uniform reagent combinations utilized
 - Follow-up
 - Identify discrete population having immunophenotype different than normal
 - Use diagnostic immunophenotype as starting point

From Feller et al (2004) Leukemia 18:1380-1390

LAIP

Focus is immunophenotype, not population

Immunophenotypic Stability

• ALL

Immunophenotypic Stability T-ALL

CD48

CD48 MRD

Population Identification

- Leukemia-Associated immunophenotype (LAIP)
 - Advantages
 - Conceptually simple and objective
 - Reduced reagent expense for follow up
 - Disadvantages
 - Requires pre-treatment sample to define LAIP
 - Requires immunophenotypic stability
 - Any event in pre-defined gate regarded as MRD
- Deviation from normal maturation
 - Advantages
 - Does not require pretreatment sample
 - Uniform reagent combinations utilized
 - Improved specificity through population identification
 - Less sensitive to immunophenotypic instability
 - Disadvantages
 - Requires detailed immunophenotypic knowledge (expert)
 - Subjective
 - More time consuming

Timing

- Induction nadir (day 14)
 - Reduced background populations
 - Hypoplastic with many apoptotic cells
- End of induction
 - ALL Few immature B cells
 - AML Active marrow regeneration, increased precursors
- End of consolidation
 - ALL Larger number of immature B cells
 - AML Normal marrow populations

Enumeration

Sample Acquisition

Identification

- Distinguish normal from abnormal
 - Degree of immunophenotypic aberrancy
 - Number and immunophenotype of background populations
- How many events define a population?
 - 10-50 events

Enumeration

- Requires complete discrimination of population
 - Insufficiently informative immunophenotype
 - Maturational expression
- Reproducibility (Poisson counting statistics)
 - CV ~ Sqrt (N)/N
 - 100 events gives CV of 10%
 - Sensitivity of 0.01% requires 1,000,000 events

Denominator

- Total nucleated cells
 - Most comparable to morphology
 - DNA binding dye often used (Syto16, Draq5, etc.)
 - Incomplete RBC lysis, platelet aggregates
 - Under-representation of NRBCs with lysis and washing
- White cells
 - CD45 positive cells + neoplasm
 - Variable CD45 on early NRBCs
 - Overestimation with erythroid hyperplasia
- Mononuclear cells
 - Exclude granulocytic lineage (high side scatter)
 - Most comparable to Ficoll-prepared samples
 - Early MRD literature used Ficoll
 - Reduced variability due to granulocytic degeneration
 - Shipped samples

Denominator

Utility of Denominator Tube

Hemodilution

- Bone marrow is a semi-solid tissue
 - Absolute cell concentration has little meaning
- Marrow aspiration is a traumatic procedure
 - Variable amount of peripheral blood introduced
 - Increased amounts of blood with each subsequent aspiration
 - 1st aspirate should be used for MRD
- Not a major problem for many samples
 - Problem in hypocellular marrows, high PB WBC count or poor quality aspirates
- No method for accurate correction
 - One method for normalization proposed for blast counts

Sources of Variability

- Identification (false positive or negative)
 - Insufficiently informative reagents
 - Improper assay validation
 - Immunophenotypic shift
 - Inexperienced interpreters
- Quantitation
 - Too few events acquired
 - Denominator effects (2 fold)
 - Sample degeneration
 - Hemodilution

Reproducibility

Listmode file exchange

Dworak, et al (2008) Cytometry 74B:331-340

Reproducibility

Paired sample exchange

Artificial diluted samples

Dworak, et al (2008) Cytometry 74B:331-340

Reproducibility

Reproducibility of MRD detection

Unpublished data, courtesy Mike Borowitz

Flow MRD on AALL03B1

Day 29 Flow MRD on AALL0232

MRD level

COMPARISON OF OUTCOMES UW vs JHH MRD .01-0.1%

Unpublished data, courtesy Mike Borowitz

COMPARISON OF OUTCOMES UW vs JHH MRD .1-1%

Unpublished data, courtesy Mike Borowitz

COMPARISON OF OUTCOMES UW vs JHH MRD >1%

Unpublished data, courtesy Mike Borowitz

Conclusions

- Flow cytometry
 - Capable of accurate MRD assessment
 - Interpretative assay
 - Sensitivity
 - Dependent on
 - Antibody combination (informative)
 - Number of cells evaluated
 - Time point
 - Less than PCR (10 cells vs 1)
 - 0.01% routine for ALL
 - 0.1% routine for AML
 - Reproducible
 - Correlates with clinical outcome